Classical Element Feedback Control for Spacecraft Orbital Maneuvers
نویسندگان
چکیده
The recent addition of autonomous formation flying spacecraft to the world's satellite fleet provides new motivation to study feedback control techniques. In this thesis, we develop nonlin-ear orbit control laws for use in spacecraft orbital maneuvers, and spacecraft formation flying. We apply these new control laws to a number of sample maneuvers, including formation establishment and formation keeping maneuvers for NASA-Goddard's Leonardo-BRDF formation, and coupled orbit, and attitude maneuvers for HokieSat, a spacecraft designed, and built by students at Virginia Tech to fly in the Ionospheric Observation Nanosatellite Formation (ION-F). To provide target orbit states for feedback control, we develop and apply an algorithm to calculate a formation master orbit representing the geometric center of the formation. We also define a new technique for choosing orbital element feedback gains which appropriately scales the gains for orbit maintenance, and provides an excellent starting point for gain optimization. The orbital element feedback control law, augmented by mean motion control, and applied with appropriate gains, forces asymptotic convergence to a spacecraft target orbit, for a large variety of spacecraft maneuvers. Acknowledgments As I finish this chapter of my life, I would like to thank everyone who has made seven years of higher education possible, fruitful, and to say the least, enjoyable. In particular, I would like to thank Dr. Chris Hall, who has been my advisor throughout the majority of this adventure, and who somehow convinced me to stay at Virginia Tech to pursue my master's degree. I could not have asked for a better experience, or a better advisor. I would also like to thank Dr. Fred Lutze, and Dr. Craig Woolsey for their contributions to this work, both as members of my committee, and as excellent instructors of dynamics and control. I would like to thank my parents, whose love and support have been endless, and the rest of my family and friends, who have helped make the last few years great.
منابع مشابه
High-performance three-dimensional maneuvers control in the area of spacecraft
Contemporary research is improving techniques to maneuvers control in the area of spacecraft. In the aspect of further development of investigations, a high-performance strategy of maneuvers control is proposed in the present research to be applicable to deal with a class of the aforementioned spacecrafts. In a word, the main subject behind the research is to realize a high-performance three-di...
متن کاملQuaternion-based Finite-time Sliding Mode Controller Design for Attitude Tracking of a Rigid Spacecraft during High-thrust Orbital Maneuver in the Presence of Disturbance Torques
In this paper, a quaternion-based finite-time sliding mode attitude controller is designed for a spacecraft performing high-thrust orbital maneuvers, with cold gas thrusters as its actuators. The proposed controller results are compared with those of a quaternion feedback controller developed for the linearized spacecraft dynamics, in terms of settling time, steady-state error, number of thrust...
متن کاملOptimal Control of Spacecraft Orbital Maneuvers by the Hamilton-Jacobi Theory
Seeking the optimal control of spacecraft orbital maneuvers with non-smooth control logic in feedback sense, we extend our recently developed technique based on the Hamilton-Jacobi theory. Specifically we propose a new methodology stemming from the direct use of generating functions for solving optimal feedback control problem. Starting from the Hamilton-Jacobi equation for generating functions...
متن کاملAdaptive Control of a Spin-Stabilized Spacecraft Using two Reaction Wheels and a 1DoF Gimbaled-Thruster
In impulsive orbital maneuvers, a large disturbance torque is generated by the thrust vector misalignment from the center of mass (C.M). The purpose of this paper is to reject the mentioned disturbance and stabilize the spacecraft attitude, based on the combination of a one degree of freedom (1DoF) gimbaled-thruster, two reaction wheels (RWs) and spin-stabilization. In this paper, the disturban...
متن کاملPreliminary Design of Spacecraft Attitude Control with Pulse-Width Pulse-Frequency Modulator for Rest-to-Rest Maneuvers
In this paper, the preferred region of design parameters for quasi-normalized equations of single-axis attitude control of rigid spacecraft using pulse-width pulse-frequency modulator (PWPFM) is presented for rest-to-rest maneuvers. Using the quasi-normalized equations for attitude control reduces the system parameters, that is, the moment of inertia, the filter gain, and the maximum torque of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002